E4980A Precision LCR Meter

20 Hz to 2 MHz

E4980AL Precision LCR Meter

20 Hz to $300 \mathrm{kHz} / 500 \mathrm{kHz} / 1 \mathrm{MHz}$

LXI

Fully compliant to
LXI Class C specification

Table of Contents

Definitions 3
How to Use Tables 3
E4980A/E4980AL 3
Basic Specifications 4
Measurement functions 4
Test signal 5
Measurement display ranges 7
Absolute measurement accuracy 8
Relative accuracy 10
Basic accuracy 13
Short offset Zs 15
Open offset Yo 16
Calibration accuracy Acal 17
Measurement accuracy 19
Compensation function 20
DC bias signal 21
Measurement assistance functions 21
Options 22
Frequency options 22
Interface options 23
Other options 23
Power and DC bias enhancement specification 23
Test signal 24
DCR measurement specification 29
General Specifications 31
Supplemental Information 35
Settling time 35
Measurement circuit protection 36
Measurement time 36
Display time 39
Measurement data transfer time 40
Maximum DC bias current 41
Relative measurement accuracy with bias current isolation 42
DC bias settling time 43
Web Resources 44

Definitions

All specifications apply to the conditions of a 0 to $55^{\circ} \mathrm{C}$ temperature range, unless otherwise stated, and 30 minutes after the instrument has been turned on.

Specifications (spec.): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions.

Supplemental information is provided as information that is useful in operating the instrument but is not covered by the product warranty. This information is classified as either typical or nominal.

Typical (typ.): Expected performance of an average unit without taking guardbands into account.
Nominal (nom.): A general descriptive term that does not imply a level of performance.

How to Use Tables

When measurement conditions fall under multiple categories in a table, apply the best value.
For example, basic accuracy Ab is 0.10% under the following conditions;
Measurement time mode SHORT

Test frequency
Test signal voltage

125 Hz
0.3 Vrms

E4980A/E4980AL

The E4980A is the model number of the 20 Hz to 2 MHz frequency range LCR meter. The E4980AL is the model number of the 20 Hz to $300 \mathrm{kHz}, 500 \mathrm{kHz}$ or 1 MHz frequency range LCR meter. See the E4980A/E4980AL Configuration Guide (5989-8321EN) for more details.

Frequency range	Model number and option
20 Hz to 2 MHz	E4980A
20 Hz to 1 MHz	E4980AL-102
20 Hz to 500 kHz	E4980AL-052
20 Hz to 300 kHz	E4980AL-032

Basic Specifications

Measurement functions

Measurement parameters

- Cp-D, Cp-Q, Cp-G, Cp-Rp
- Cs-D, Cs-Q, Cs-Rs
- Lp-D, Lp-Q, Lp-G, Lp-Rp, Lp-Rdc
- Ls-D, Ls-Q, Ls-Rs, Ls-Rdc
- R-X
- Z-Өd, Z-Өr
- G-B
- Y- $\theta \mathrm{d}, \mathrm{Y}-\theta \mathrm{r}$
- Vdc-Idc ${ }^{1}$

Definitions

Cp Capacitance value measured with parallel-equivalent circuit model
Cs Capacitance value measured with series-equivalent circuit model
Lp Inductance value measured with parallel-equivalent circuit model
Ls Inductance value measured with series-equivalent circuit model
D Dissipation factor
Q Quality factor (inverse of D)
G Equivalent parallel conductance measured with parallel-equivalent circuit model
Rp Equivalent parallel resistance measured with parallel-equivalent circuit model
Rs Equivalent series resistance measured with series-equivalent circuit model
Rdc Direct-current resistance
R Resistance
X Reactance
Z Impedance
Y Admittance
θ d Phase angle of impedance/admittance (degree)
Or Phase angle of impedance/admittance (radian)
B Susceptance
Vdc Direct-current voltage
Idc Direct-current electricity

Deviation measurement function: Deviation from reference value and percentage of deviation from reference value can be output as the result.

Equivalent circuits for measurement: Parallel, Series

1. E4980A-001 is required.

Impedance range selection: Auto (auto range mode), manual (hold range mode)
Trigger mode: Internal trigger (INT), manual trigger (MAN), external trigger (EXT), GPIB trigger (BUS)

Range	$0 \mathrm{~s}-999 \mathrm{~s}$
Resolution	$100 \mu \mathrm{~s}(0 \mathrm{~s} \leq-\leq 100 \mathrm{~s})$
	$1 \mathrm{~ms}(100 \mathrm{~s}<-\leq 999 \mathrm{~s})$

Table 1. Trigger delay time

Range	$0 \mathrm{~s}-999 \mathrm{~s}$
Resolution	$100 \mu \mathrm{~s}(0 \mathrm{~s} \leq-\leq 100 \mathrm{~s})$
	$1 \mathrm{~ms}(100 \mathrm{~s}<-\leq 999 \mathrm{~s})$

Table 2. Step delay time

Measurement terminal: Four-terminal pair
Test cable length: $0 \mathrm{~m}, 1 \mathrm{~m}, 2 \mathrm{~m}, 4 \mathrm{~m}$
Measurement time modes: Short mode, medium mode, long mode.

Range	$1-256$ measurements
Resolution	1

Table 3. Averaging

Test signal

Test frequencies	$20 \mathrm{~Hz}-2 \mathrm{MHz}($ E4980A $)$
	$20 \mathrm{~Hz}-1 \mathrm{MHz}($ E4980AL-102 $)$
	$20 \mathrm{~Hz}-500 \mathrm{kHz}($ E4980AL-052)
	$20 \mathrm{~Hz}-300 \mathrm{kHz}($ E4980AL-032 $)$
Resolution	$0.01 \mathrm{~Hz}(20 \mathrm{~Hz}-99.99 \mathrm{~Hz})$
	$0.1 \mathrm{~Hz}(100 \mathrm{~Hz}-999.9 \mathrm{~Hz})$
	$1 \mathrm{~Hz}(1 \mathrm{kHz}-9.999 \mathrm{kHz})$
	$10 \mathrm{~Hz}(10 \mathrm{kHz}-99.99 \mathrm{kHz})$
	$100 \mathrm{~Hz}(100 \mathrm{kHz}-999.9 \mathrm{kHz})$
	$1 \mathrm{kHz}(1 \mathrm{MHz}-2 \mathrm{MHz})$
Measurement accuracy	$\pm 0.01 \%$

Table 4. Test frequencies

Normal	Program selected voltage or current at the measurement terminals when they are opened or short-circuited, respectively.
Constant	Maintains selected voltage or current at the device under test (DUT) independently of changes in impedance of DUT.

Table 5. Test signal modes

Signal level

Range	$0 \mathrm{Vrms}-2.0 \mathrm{Vrms}$	
Resolution	$100 \mu \mathrm{Vrms}(0 \mathrm{Vrms} \leq-\leq 0.2 \mathrm{Vrms})$	
	$200 \mu \mathrm{Vrms}(0.2 \mathrm{Vrms}<-\leq 0.5 \mathrm{Vrms})$	
	$500 \mu \mathrm{Vrms}(0.5 \mathrm{Vrms}<-\leq 1 \mathrm{Vrms})$	
	$1 \mathrm{mVrms}(1 \mathrm{Vrms}<-\leq 2 \mathrm{Vrms})$	
Accuracy	Normal	$\pm(10 \%+1 \mathrm{mVrms})$
	Constant 1	$\pm(6 \%+1 \mathrm{mVrms})$
		Test frequency $\leq 1 \mathrm{MHz}:$ spec.
		Test frequency $>1 \mathrm{MHz:} \mathrm{typ}$.

Table 6. Test signal voltage
$\left.\begin{array}{lll}\hline \text { Range } & 0 \text { Arms }-20 \mathrm{mArms} & \\ \hline \text { Resolution } & 1 \mu \text { Arms }(0 \text { Arms } \leq-\leq 2 \mathrm{mArms}) & \\ & 2 \mu \text { Arms }(2 \mathrm{mArms}<-\leq 5 \mathrm{mArms}) & \\ \hline & 5 \mu \text { Arms }(5 \mathrm{mArms}<-\leq 10 \mathrm{mArms}) & \\ \hline \text { Accuracy } & \text { Normal } & \pm(10 \% \mathrm{Arms}(10 \mathrm{mArms}<-\leq 20 \mathrm{mArms})\end{array}\right)$

Table 7. Test signal current

Output impedance: 100Ω (nominal)
Test signal level monitor function

- Test signal voltage and test signal current can be monitored.
- Level monitor accuracy (see next page)

1. When auto level control function is on.

Test signal voltage ${ }^{2}$	Test frequency	Specification
$5 \mathrm{mVrms}-2 \mathrm{Vrms}$	$\leq 1 \mathrm{MHz}$	$\pm(3 \%$ of reading value $+0.5 \mathrm{mVrms})$
	$>1 \mathrm{MHz}$	$\pm 6 \%$ of reading value $+1 \mathrm{mVrms})$

Table 8. Test signal voltage monitor accuracy (Vac)

Test signal current ${ }^{2}$	Test frequency	Specification
$50 \mu \mathrm{Arms}-20 \mathrm{mArms}$	$\leq 1 \mathrm{MHz}$	$\pm(3 \%$ of reading value $+5 \mu \mathrm{Arms})$
	$>1 \mathrm{MHz}$	$\pm(6 \%$ of reading value $+10 \mu \mathrm{Arms})$

Table 9. Test signal current monitor accuracy (lac)

Measurement display ranges

Table 10 shows the range of measured value that can be displayed on the screen. For the effective measurement ranges, refer to Figure 1 impedance measurement accuracy example.

Parameter	Measurement display range
Cs, Cp	$\pm 1.000000 \mathrm{aF}$ to 999.9999 EF
Ls, Lp	$\pm 1.000000 \mathrm{aH}$ to 999.9999 EH
D	± 0.000001 to 9.999999
Q	± 0.01 to 99999.99
R, Rs, Rp, X, Z, Rdc	$\pm 1.000000 \mathrm{a} \Omega$ to $999.9999 \mathrm{E} \Omega$
G, B, Y	± 1.000000 aS to 999.9999 ES
Vdc	$\pm 1.000000 \mathrm{aV}$ to 999.9999 EV
Idc	$\pm 1.000000 \mathrm{aA}$ to 999.9999 EA
θr	± 1.000000 arad to 3.141593 rad
$\theta \mathrm{d}$	$\pm 0.0001 \mathrm{deg}$ to 180.0000 deg
$\Delta \%$	$\pm 0.0001 \%$ to 999.9999%

Table 10. Allowable display ranges for measured values
a: $1 \times 10^{-18}, \mathrm{E}: 1 \times 10^{18}$

[^0]
Absolute measurement accuracy

The following equations are used to calculate absolute accuracy.
Absolute accuracy Aa of $|Z|,|Y|, L, C, R, X, G, B(L, C, X$, and B accuracies apply when $D x \leq 0.1$, R and G accuracies apply when $Q x \leq 0.1$)

When $D_{x} \geq 0.1$, multiply Acal by $\sqrt{1+D} 2_{x}$ for L, C, X, and B accuracies
When $Q_{x} \geq 0.1$, multiply Acal by $\sqrt{1+Q^{2}} \quad$ for R and G accuracies
Under an AC magnetic field, the following equation is applied to the measurement accuracy.
$A x(1+B x(2+0.5 / V s))$
Where A Absolute accuracy
B Magnetic flux density [Gauss]
Vs Test signal voltage level [Volts]
Equation 1. $A a=A e+A c a l$
Aa Absolute accuracy (\% of reading value)
Ae Relative accuracy (\% of reading value)
Acal Calibration accuracy (\%)
where G accuracy is applied only to G-B measurements.

D accuracy (when Dx ≤ 0.1)

Equation 2. $D e+\theta c a l$

Dx Measured D value
De Relative accuracy of D
Өcal Calibration accuracy of θ (radian)
when $0.1<\mathrm{Dx} \leq 1$, multiply Ocal by ($1+\mathrm{Dx}$)
Q accuracy (When $Q x \times D a<1)^{1}$
Equation 3. $\pm \frac{\left(Q x^{2} \times D a\right)}{(1 \mp Q x \times D a)}$

Qx Measured Q value
Da Absolute accuracy of D

θ accuracy

Equation 4. $\quad \theta e+\theta c a l$

θ e Relative accuracy of θ (degree)
θ cal Calibration accuracy of θ (degree)

G accuracy (when $\mathrm{Dx} \leq 0.1$)

Equation 5. $\quad B x+D a(S)$
 $$
B x=2 \pi f C x=\frac{1}{2 \pi f L x}
$$

Dx Measured D value
$B x \quad$ Measured B value (S)
Da Absolute accuracy of D
f Test frequency (Hz)
Cx Measured C value (F)
Lx Measured L value (H)
where the accuracy of G is applied to $C p-G$ measurements.

Absolute accuracy of Rp (when $\mathrm{Dx} \leq 0.1$ and $\mathrm{Dx}>\mathrm{Da})^{1}$

Equation 6. $\pm \frac{R p x \times D a}{D x \mp D a}(\Omega)$
Rpx Measured Rp value (Ω)
Dx Measured D value
Da Absolute accuracy of D

Absolute accuracy of Rs (when $\mathrm{Dx} \leq 0.1$)

Equation 7. $\quad X x \times D a \quad(\Omega)$
$X X=\frac{1}{2 \pi f C x}=2 \pi f L x$
Dx Measured D value
Xx Measured X value (Ω)
Da Absolute accuracy of D
f Test frequency (Hz)
Cx Measured C value (F)
Lx Measured L value (H)

Relative accuracy

Relative accuracy includes stability, temperature coefficient, linearity, repeatability, and calibration interpolation error. Relative accuracy is specified when all of the following conditions are satisfied:

- Warm-up time: 30 minutes
- Test cable length: $0 \mathrm{~m}, 1 \mathrm{~m}, 2 \mathrm{~m}$, or 4 m (Keysight Technologies, Inc. 16048A/D/E)
- A "Signal Source Overload" warning does not appear. When the test signal current exceeds a value in table 11 below, a "Signal Source Overload" warning appears.

Test signal voltage	Test frequency	Condition ${ }^{1}$
$\leq 2 \mathrm{Vrms}$	-	-
$>2 \mathrm{Vrms}$	$\leq 1 \mathrm{MHz}$	The smaller value of either 110 mA or $130 \mathrm{~mA}-0.0015 \times \mathrm{Vac} \times(\mathrm{Fm} / 1 \mathrm{MHz}) \times\left(\mathrm{L} _\right.$cable +0.5$)$
	$>1 \mathrm{MHz}$	$70 \mathrm{~mA}-0.0015 \times \mathrm{Vac} \times(\mathrm{Fm} / 1 \mathrm{MHz}) \times\left(\mathrm{L} _\right.$cable +0.5$)$

1. When the calculation result is a negative value, 0 A is applied.

Table 11.

Vac [V]	Test signal voltage
Fm [Hz]	Test frequency
L_{C} cable $[\mathrm{m}]$	Cable length

- OPEN and SHORT corrections have been performed.
- Bias current isolation: Off
- The $D C$ bias current does not exceed a set value within each range of the $D C$ bias current
- The optimum impedance range is selected by matching the impedance of DUT to the effective measuring range.
$|Z|,|Y|, L, C, R, X, G$, and B accuracy (L, C, X, and B accuracies apply when $D x \leq 0.1, R$ and G accuracies apply $Q_{x} \leq 0.1$)

When $D_{x}>0.1$, multiply A_{e} by $\sqrt{1+D^{2}} \quad$ for L, C, X, and B accuracies
When $Q_{x}>0.1$, multiply A_{e} by $\sqrt{1+Q^{2}} \quad$ for R and G accuracies

Relative accuracy Ae is given as:

Equation 8. $\quad A e=[A b+Z s /|Z m / \times 100+Y o \times|Z m| \times 100] \times K t$

Zm Impedance of DUT
Ab Basic accuracy
Zs Short offset
Yo Open offset
Kt Temperature coefficient

D accuracy

D accuracy De is given as - when $\mathrm{Dx} \leq 0.1$
Equation 9. $D e= \pm A e / 100$
Dx Measured D value
Ae Relative accuracies of $|Z|,|Y|, L, C, R, X, G$, and B
When $0.1<\mathrm{Dx} \leq 1$, multiply De by ($1+\mathrm{Dx}$)

Q accuracy (when $Q \times \operatorname{De}<1)^{1}$
Q accuracy $Q e$ is given as:

Qx Measured Q value
De Relative D accuracy

θ accuracy

θ accuracy $\theta \mathrm{e}$ is given as:
Equation 11. $\theta e=\frac{180 \times A e}{\pi \times 100}(\mathrm{deg})$
Ae Relative accuracies of $|Z|,|Y|, L, C, R, X, G$ and B

G accuracy (when Dx ≤ 0.1)

G accuracy Ge is given as:

$$
\text { Equation 12. } \begin{align*}
G e & =B x \times D e \tag{S}\\
B x & =2 \pi f C x=\frac{1}{2 \pi f L x}
\end{align*}
$$

Ge Relative G accuracy
$D x \quad$ Measured D value
$B x \quad$ Measured B value
De Relative D accuracy
f Test frequency (Hz)
Cx Measured C value (F)
Lx Measured L value (H)

Rp accuracy (when $\operatorname{Dx} \leq 0.1$ and $\mathrm{Dx}>\mathrm{De})^{1}$
Rp accuracy Rpe is given as:
Equation 13. $R p e= \pm \frac{R p x \times D e}{D x \mp D e} \quad(\Omega)$

Rpe Relative Rp accuracy
Rpx Measured Rp value (Ω)
Dx Measured D value
De Relative D accuracy

Rs accuracy (when $\mathrm{Dx} \leq 0.1$)
Rs accuracy Rse is given as:
Equation 14. Rse $=X x \times D e$
$X x=\frac{1}{2 \pi f C x}=2 \pi f L x$

Rse Relative Rs accuracy
Dx Measured D value
Xx Measured X value (Ω)
De Relative D accuracy
f Test frequency (Hz)
Cx Measured C value (F)
Lx Measured L value (H)

1. When $\mathrm{Dx} \leq \mathrm{De}$, Rpe $= \pm \infty$

Example of C-D accuracy calculation

Measurement conditions

Test frequency:	1 kHz
Measured C value:	100 nF
Test signal voltage:	1 Vrms
Measurement time mode:	Medium
Measurement temperature:	$23^{\circ} \mathrm{C}$

$A b=0.05 \%$
$|Z m|=1 /(2 \pi \times 1 \times 103 \times 100 \times 10-9)=1590 \Omega$
$\mathrm{Zs}=0.6 \mathrm{~m} \Omega \times(1+0.400 / 1) \times(1+\sqrt{(1000 / 1000)}=1.68 \mathrm{~m} \Omega$
$\mathrm{Yo}=0.5 \mathrm{nS} \times(1+0.100 / 1) \times(1+\sqrt{(100 / 1000)}=0.72 \mathrm{nS}$
C accuracy: $\mathrm{Ae}=[0.05+1.68 \mathrm{~m} / 1590 \times 100+0.72 \mathrm{n} \times 1590 \times 100] \times 1=0.05 \%$
D accuracy: $D e=0.05 / 100=0.0005$

Basic accuracy

Basic accuracy Ab is given from Table 12, 13, 14 and 15.

Test frequency [Hz]	Test signal voltage 5 mVrms $\leq-<50 \mathrm{mVrms}$	50 mVrms $\leq-<0.3 \mathrm{Vrms}$	0.3 Vrms $\leq-\leq 1 \mathrm{Vrms}$	1 Vrms $<-\leq 10 \mathrm{Vrms}$	10 Vrms $<-\leq 20 \mathrm{Vrms}$
$20 \leq-<125$	$(0.6 \%) \times$ $(50 \mathrm{mVrms} / \mathrm{Vs})$	0.60%	0.30%	0.30%	0.30%

Table 12. Measurement time mode = SHORT

Test frequency [Hz]	Test signal voltage 5 mVrms $\leq-<30 \mathrm{mVrms}$	30 mVrms $\leq-<0.3$ Vrms	0.3 Vrms $\leq-\leq 1$ Vrms	1 Vrms $<-\leq 10$ Vrms	10 Vrms $<-\leq 20$ Vrms
$20 \leq-<100$	$(0.25 \%) \times$ $(30 \mathrm{mVrms} / \mathrm{Vs})$	0.25%	0.10%	0.15%	0.15%
$100 \leq-\leq 1 \mathrm{M}$	$(0.1 \%) \times$ $(30 \mathrm{mVrms} / \mathrm{Vs})$	0.10%	0.05%	0.10%	0.15%
$1 \mathrm{M}<-\leq 2 \mathrm{M}$	$(0.2 \%) \times$ $(30 \mathrm{mVrms} / \mathrm{Vs})$	0.20%	0.10%	0.20%	0.30%

Table 13. Measurement time mode = MED, LONG

Vs [Vrms] Test signal voltage

Effect by impedance of DUT

Test frequency [Hz]	Impedance of DUT	
	$1.08 \Omega \leq\|\mathrm{Zx}\|<30 \Omega$	$\|\mathrm{Zx}\|<1.08 \Omega$
$20 \leq-\leq 1 \mathrm{M}$	0.05\%	0.10\%
$1 \mathrm{M}<-\leq 2 \mathrm{M}$	0.10\%	0.20\%

Table 14. For impedance of DUT below 30Ω, the following value is added.

Test frequency [Hz]	Impedance of DUT $9.2 \mathrm{k} \Omega<\|\mathrm{Zx}\| \leq 92 \mathrm{k} \Omega$	$92 \mathrm{k} \Omega<\|\mathrm{Zx}\|$
$10 \mathrm{k} \leq-\leq 100 \mathrm{k}$	0%	0.05%
$100 \mathrm{k}<-\leq 1 \mathrm{M}$	0.05%	0.05%
$1 \mathrm{M}<-\leq 2 \mathrm{M}$	0.10%	0.10%

Table 15. For impedance of DUT over $9.2 \mathrm{k} \Omega$, the following value is added.

Effect of cable extension

When the cable is extended, the following element is added per one meter.
$0.015 \% \times(\text { Fm/1 MHz })^{2} \times(\text { L_cable })^{2}$
Fm [Hz] Test frequency
L_cable [m] Cable length

Short offset Zs

Test frequency [Hz]	Measurement time mode SHORT	MED, LONG
$20-2 \mathrm{M}$	$2.5 \mathrm{~m} \Omega \times(1+0.400 / \mathrm{Vs}) \times$ $(1+\sqrt{(1000 / \mathrm{Fm})})$	$0.6 \mathrm{~m} \Omega \times(1+0.400 / \mathrm{Vs}) \times$ $(1+\sqrt{(1000 / \mathrm{Fm})})$

Table 16. Impedance of DUT $>1.08 \Omega$

Test frequency [Hz]	Measurement time mode SHORT	MED, LONG
$20-2 \mathrm{M}$	$1 \mathrm{~m} \Omega \times(1+1 / \mathrm{Vs}) \times(1+\sqrt{(1000 / \mathrm{Fm})})$	$0.2 \mathrm{~m} \Omega \times(1+1 / \mathrm{Vs}) \times(1+\sqrt{(1000 / \mathrm{Fm})})$

Table 17. Impedance of DUT $\leq 1.08 \Omega$

Vs [Vrms]	Test signal voltage
Fm $[\mathrm{Hz}]$	Test frequency

Effect of cable extension (Short offset)

Test frequency [Hz]	Cable length 0 m	1 m	2 m	4 m
$20 \leq-\leq 1 \mathrm{M}$	0	$0.25 \mathrm{~m} \Omega$	$0.5 \mathrm{~m} \Omega$	$1 \mathrm{~m} \Omega$
$1 \mathrm{M}<-\leq 2 \mathrm{M}$	0	$1 \mathrm{~m} \Omega$	$2 \mathrm{~m} \Omega$	$4 \mathrm{~m} \Omega$

Table 18. When the cable is extended, the following value is added to Zs (independent of the measurement time mode).

Open offset Yo

Test frequency [Hz]	Measurement time mode SHORT	MED, LONG
$20 \leq-\leq 100 \mathrm{k}$	$2 \mathrm{nS} \times(1+0.100 / \mathrm{Vs}) \times$ $(1+\sqrt{(100 / \mathrm{Fm})})$	$0.5 \mathrm{nS} \times(1+0.100 / \mathrm{Vs}) \times$ $(1+\sqrt{(100 / \mathrm{Fm})})$
$100 \mathrm{k}<-\leq 1 \mathrm{M}$	$20 \mathrm{nS} \times(1+0.100 / \mathrm{Vs})$	$5 \mathrm{nS} \times(1+0.100 / \mathrm{Vs})$
$1 \mathrm{M}<-\leq 2 \mathrm{M}$	$40 \mathrm{nS} \times(1+0.100 / \mathrm{Vs})$	$10 \mathrm{nS} \times(1+0.100 / \mathrm{Vs})$

Table 19. Test signal voltage ≤ 2.0 Vrms

Test frequency [Hz]	Measurement time mode	
SHORT	MED, LONG	
$20 \leq-\leq 100 \mathrm{k}$	$2 \mathrm{nS} \times(1+2 / \mathrm{Vs}) \times(1+\sqrt{(100 / \mathrm{Fm})})$	$0.5 \mathrm{nS} \times(1+2 / \mathrm{Vs}) \times(1+\sqrt{(100 / \mathrm{Fm})})$
$100 \mathrm{k}<-\leq 1 \mathrm{M}$	$20 \mathrm{nS} \times(1+2 / \mathrm{Vs})$	$5 \mathrm{nS} \times(1+2 / \mathrm{Vs})$
$1 \mathrm{M}<-\leq 2 \mathrm{M}$	$40 \mathrm{nS} \times(1+2 / \mathrm{Vs})$	$10 \mathrm{nS} \times(1+2 / \mathrm{Vs})$

Table 20. Test signal voltage > 2.0 Vrms

Vs $[\mathrm{Vrms}]$	Test signal voltage
Fm $[\mathrm{Hz}]$	Test frequency

Note
The Open Offset may become three times greater in the ranges of 40 to 70 kHz and 80 to 100 kHz due to residual response.

Effect of cable length

Test frequency [Hz]	Cable length			
	0 m	1 m	2 m	4 m
$100 \leq-<100 \mathrm{k}$	1	$1+5 \times \mathrm{Fm} / 1 \mathrm{MHz}$	$1+10 \times \mathrm{Fm} / 1 \mathrm{MHz}$	$1+20 \times \mathrm{Fm} / 1 \mathrm{MHz}$
$100 \mathrm{k} \leq-\leq 1 \mathrm{M}$	1	$1+0.5 \times \mathrm{Fm} / 1 \mathrm{MHz}$	$1+1 \times \mathrm{Fm} / 1 \mathrm{MHz}$	$1+2 \times \mathrm{Fm} / 1 \mathrm{MHz}$
$1 \mathrm{M}<-\leq 2 \mathrm{M}$	1	$1+1 \times \mathrm{Fm} / 1 \mathrm{MHz}$	$1+2 \times \mathrm{Fm} / 1 \mathrm{MHz}$	$1+4 \times \mathrm{Fm} / 1 \mathrm{MHz}$

Table 21. When the cable is extended, multiply Yo by the following factor.

Fm [Hz] Test frequency

Temperature factor Kt

Temperature $\left[{ }^{\circ} \mathrm{C}\right]$	Kt
$0 \leq-<18$	4
$18 \leq-\leq 28$	1
$28<-\leq 55$	4

Table 22. Temperature factor Kt.

Calibration accuracy Acal

Calibration accuracy Acal is given below.
For impedance of DUT or test frequency on the boundary line, apply the smaller value.

	Test frequency [Hz]						
	20-1 k	1k-10k	$10 \mathrm{k}-100 \mathrm{k}$	$100 \mathrm{k}-300 \mathrm{k}$	$300 \mathrm{k}-1 \mathrm{M}$	1 M - 2 M	
\|Z	[\%]	0.03	0.05	0.05	$\begin{aligned} & 0.05+5 \times \\ & 10^{-5} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.05+5 \times \\ & 10^{-5} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.1+1 \times \\ & 10^{-4} \mathrm{Fm} \end{aligned}$
θ [radian]	1×10^{-4}	2×10^{-4}	3×10^{-4}	$\begin{aligned} & 3 \times 10^{-4}+2 \times \\ & 10^{-7} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 3 \times 10^{-4}+2 \times \\ & 10^{-7} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 6 \times 10^{-4}+4 \times \\ & 10^{-7} \mathrm{Fm} \end{aligned}$	

Table 23. Impedance range $=0.1,1,10 \Omega$

	Test frequency [Hz]						
	$20-1 \mathrm{k}$	$1 \mathrm{k}-10 \mathrm{k}$	$10 \mathrm{k}-100 \mathrm{k}$	$100 \mathrm{k}-300 \mathrm{k}$	$300 \mathrm{k}-1 \mathrm{M}$	$1 \mathrm{M}-2 \mathrm{M}$	
$\mathrm{Z} \mid[\%]$	0.03	0.05	0.05	$0.05+5 \times$ $10^{-5} \mathrm{Fm}$	$0.05+5 \times$ $10^{-5} \mathrm{Fm}$	$0.1+1 \times$ $10^{-4} \mathrm{Fm}$	
θ [radian]	1×10^{-4}	2×10^{-4}	3×10^{-4}	$3 \times 10-4$	3×10^{-4}	6×10^{-4}	

Table 24. Impedance range $=100 \Omega$

	Test frequency [Hz]						
	$20-1 \mathrm{k}$	$1 \mathrm{k}-10 \mathrm{k}$	$10 \mathrm{k}-100 \mathrm{k}$	$100 \mathrm{k}-300 \mathrm{k}$	$300 \mathrm{k}-1 \mathrm{M}$	$1 \mathrm{M}-2 \mathrm{M}$	
$\mathrm{Z} \mid[\%]$	0.03	0.03	0.05	0.05	0.05	0.1	
θ [radian]	1×10^{-4}	1×10^{-4}	3×10^{-4}	3×10^{-4}	3×10^{-4}	6×10^{-4}	

Table 25. Impedance range $=300,1 \mathrm{k} \Omega$

	Test frequency [Hz]						
	20-1k	1k-10 k	$10 \mathrm{k}-100 \mathrm{k}$	$100 \mathrm{k}-300 \mathrm{k}$	$300 \mathrm{k}-1 \mathrm{M}$	1 M - 2 M	
\|Z	[\%]	$\begin{aligned} & 0.03+ \\ & 1 \times 10^{-4} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.03+ \\ & 1 \times 10^{-4} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.03+ \\ & 1 \times 10^{-4} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.03+ \\ & 1 \times 10^{-4} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.03+ \\ & 1 \times 10^{-4} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.06+ \\ & 2 \times 10^{-4} \mathrm{Fm} \end{aligned}$
θ [radian]	$(100+2.5$	$(100+2.5$	$(100+2.5$	$(100+2.5$	$(100+2.5$	$(200+5$	
	$\mathrm{Fm}) \times 10^{-6}$						

Table 26. Impedance range $=3 \mathbf{k}, 10 \mathrm{k} \Omega$

	Test frequency [Hz]						
	20-1k	1k-10 k	$10 \mathrm{k}-100 \mathrm{k}$	$100 \mathrm{k}-300 \mathrm{k}$	$300 \mathrm{k}-1 \mathrm{M}$	1 M - 2 M	
\|Z	[\%]	$\begin{aligned} & 0.03+ \\ & 1 \times 10^{-3} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.03+ \\ & 1 \times 10-3 \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.03+ \\ & 1 \times 10-3 \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.03+ \\ & 1 \times 10-3 \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.03+ \\ & 1 \times 10^{-4} \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 0.06+ \\ & 2 \times 10^{-4} \mathrm{Fm} \end{aligned}$
θ [radian]	$\begin{aligned} & (100+20 \\ & F m) \times 10^{-6} \end{aligned}$	$\begin{aligned} & (100+20 \\ & F m) \times 10^{-6} \end{aligned}$	$\begin{aligned} & (100+20 \\ & F m) \times 10-6 \end{aligned}$	$\begin{aligned} & (100+20 \\ & F m) \times 10-6 \end{aligned}$	$\begin{aligned} & (100+2.5 \\ & \mathrm{Fm}) \times 10^{-6} \end{aligned}$	$\begin{aligned} & (200+5 \\ & \mathrm{Fm}) \times 10^{-6} \end{aligned}$	

Table 27. Impedance range $=30 \mathrm{k}, 100 \mathrm{k} \Omega$

Fm[kHz] Test frequency

Measurement accuracy

The impedance measurement calculation example below is the result of absolute measurement accuracy.

Figure 1. Impedance measurement accuracy (Test signal voltage $=1 \mathrm{Vrms}$, cable length $=0 \mathrm{~m}$, measurement time mode = MED)

Compensation function

Type of compensation	Description
OPEN compensation	Compensates errors caused by the stray admittance (C, G) of the test fixture.
SHORT compensation	Compensates errors caused by the residual impedance (L, R) of the test fixture.
LOAD compensation	Compensates errors between the actual measured value and a known standard value under the measurement conditions desired by the user.

Table 28. The E4980A/E4980AL provides three types of compensation functions: OPEN compensation, SHORT compensation, and LOAD compensation.

List sweep

Points: There is a maximum of 201 points.
First sweep parameter (primary parameter): Test frequency, test signal voltage, test signal current, test signal voltage of DC bias signal, test signal current of DC bias signal, DC source voltage.

Second sweep parameter (secondary parameter): None, impedance range, test frequency, test signal voltage, test signal current, test signal voltage of DC bias signal, test signal current of DC bias signal,
DC source voltage

```
Note
A parameter selected for one of the two parameters cannot be selected for the other parameter. It is not
possible to set up a combination of test signal voltage and test signal current or one of test signal
voltage of DC bias signal and test signal current of DC bias.
The secondary parameter can be set only with SCPI commands.
```


Trigger mode

Sequential mode: When the E4980A/E4980AL is triggered once, the device is measured at all sweep points. /EOM/INDEX is output only once.

Step mode: The sweep point is incremented each time the E4980A/E4980AL is triggered. /EOM/INDEX is output at each point, but the result of the comparator function of the list sweep is available only after the last/EOM is output.

Comparator function of list sweep: The comparator function enables setting one pair of lower and upper limits for each measurement point.

You can select from: Judge with the first sweep parameter/Judge with the second parameter/Not used for each pair of limits.

Time stamp function: In the sequential mode, it is possible to record the measurement starting time at each measurement point by defining the time when FW detects a trigger as 0 and obtain it later with the SCPI command.

Comparator function

Bin sort: The primary parameter can be sorted into 9 BINs, OUT_OF_BINS, AUX_BIN, and LOW_C_REJECT. The secondary parameter can be sorted into HIGH, IN, and LOW. The sequential mode and tolerance mode can be selected as the sorting mode.

Limit setup: Absolute value, deviation value, and \% deviation value can be used for setup.
BIN count: Countable from 0 to 999999.

DC bias signal

Range	0 V to +2 V
Resolution	$0 \mathrm{~V} / 1.5 \mathrm{~V} / 2 \mathrm{~V}$ only
Accuracy	$0.1 \%+2 \mathrm{mV}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$
	$(0.1 \%+2 \mathrm{mV}) \times 4\left(0\right.$ to $18^{\circ} \mathrm{C}$ or 28 to $\left.55^{\circ} \mathrm{C}\right)$

Table 29. Test signal voltage

Output impedance: 100Ω (nominal)

Measurement assistance functions

Data buffer function: Up to 201 measurement results can be read out in a batch.

Save/Recall function:

- Up to 10 setup conditions can be written to/read from the built-in non-volatile memory.
- Up to 10 setup conditions can be written to/read from the USB memory.
- Auto recall function can be performed when the setting conditions are written to Register 10 of the USB memory.

Key lock function: The front panel keys can be locked.
GPIB: 24-pin D-Sub (Type D-24), female; complies with IEEE488.1, 2 and SCPI
USB host port: Universal serial bus jack, type-A (4 contact positions, contact 1 is on your left), female (for connection to USB memory only).

USB interface port: Universal serial bus jack, type mini-B (4 contact positions); complies with USBTMCUSB488 and USB 2.0; female; for connection to the external controller.

USBTMC: Abbreviation for USB Test \& Measurement Class
LAN: 10/100 BaseT Ethernet, 8 pins (two speed options)
LXI Compliance: Class C (only applies to units with firmware revision A.02.00 or later)

Options

Frequency options

E4980A	20 Hz to 2 MHz
E4980AL-032	20 Hz to 300 kHz
E4980AL-052	20 Hz to 500 kHz
E4980AL-102	20 Hz to 1 MHz

Note
Option xxx is described as E4980A-xxx in the order information

Options	E4980A	E4980AL
Power and DC bias enhancement (001)	Installable	Not installable
DCR measurement (200)	Installable 1	Not installable 2
Handler interface (201)	Installable	Installable
Scanner interface (301)	Installable	Installable

1. Mandatory option
2. DCR measurement function is equipped by default.

Table 30. Installable options

Interface options

Option 201 (Handler interface)

Adds handler interface.

Option 301 (Scanner interface)

Adds scanner interface.

Option 710 (No interface)

An option with no interface.
Up to 2 interface options can be installed in the interface connector on the rear panel.
When no interface is installed, two of the option 710 are installed. When one interface is installed, the option number of its interface and one option 710 are installed.

Other options

Option 001 (Power and DC Bias enhancement)
Increases test signal voltage and adds the variable DC bias voltage.

Option 007 (Standard model)

Upgrades the entry model to the standard (only available in E4980AU).
Note
Option 007 can be installed only in the E4980A with option 005.
Option 200 (DCR measurement)
Adds DCR measurement
Note
E4980A-200/001 and E4980AL-032/052/102 supports DCR measurement function.

Power and DC bias enhancement specification
Increases test signal voltage and adds the variable DC bias voltage function. The Vdc-Idc measurement function is available when the option 001 is installed.

Measurement parameters

The following parameters can be used.

- Lp-Rdc
- Ls-Rdc
- Vdc-ldc
where
Rdc Direct-current resistance (DCR)
Vdc Direct-current voltage
Idc Direct-current electricity

Test signal

Signal level

Range		0 Vrms to 20 Vrms (test frequency $\leq 1 \mathrm{MHz}$) 0 Vrms to 15 Vrms (test frequency $>1 \mathrm{MHz}$)
Resolution		$\begin{aligned} & 100 \mu \mathrm{Vrms}(0 \text { Vrms } \leq-\leq 0.2 \mathrm{Vrms}) \\ & 200 \mu \mathrm{Vrms}(0.2 \mathrm{Vrms}<-\leq 0.5 \mathrm{Vrms}) \\ & 500 \mu \mathrm{Vrms}(0.5 \mathrm{Vrms}<-\leq 1 \text { Vrms }) \\ & 1 \mathrm{mVrms}(1 \mathrm{Vrms}<-\leq 2 \mathrm{Vrms}) \\ & 2 \mathrm{mVrms}(2 \mathrm{Vrms}<-\leq 5 \mathrm{Vrms}) \\ & 5 \mathrm{mV} \text { rms (} 5 \mathrm{Vrms}<-\leq 10 \text { Vrms }) \\ & 10 \mathrm{mVrms}(10 \mathrm{Vrms}<-\leq 20 \mathrm{Vrms}) \end{aligned}$
Setup accuracy	Normal	$\pm(10 \%+1 \mathrm{mVrms})$ (test signal voltage $\leq 2 \mathrm{Vrms}$) (test frequency $\leq 1 \mathrm{MHz}$: spec., test frequency > 1 MHz : typ.)
		$\pm(10 \%+10 \mathrm{mVrms})$ (Test frequency $\leq 300 \mathrm{kHz}$, test signal voltage > 2 Vrms) (spec.)
		$\pm(15 \%+20 \mathrm{mVrms})$ (test frequency $>300 \mathrm{kHz}$, test signal voltage > 2 Vrms) (test frequency $\leq 1 \mathrm{MHz}$: spec., test frequency $>1 \mathrm{MHz}$: typ.)
	Constant ${ }^{1}$	$\pm(6 \%+1 \mathrm{mVrms})$ (test signal voltage $\leq 2 \mathrm{Vrms}$) (test frequency $\leq 1 \mathrm{MHz}$: spec., test frequency > 1 MHz : typ.)
		$\pm(6 \%+10 \mathrm{mVrms})$ (test frequency $\leq 300 \mathrm{kHz}$, test signal voltage > 2 Vrms) (spec.)
		$\pm(12 \%+20 \mathrm{mVrms}) \text { (test frequency }>300 \mathrm{kHz} \text {, }$ test signal voltage > 2 Vrms) (test frequency $\leq 1 \mathrm{MHz}$: spec., test frequency $>1 \mathrm{MHz}$: typ.)

[^1]Table 31. Test signal voltage

Range		0 Arms - 100 mArms
Resolution		$1 \mu \mathrm{Arms}$ (0 Arms $\leq-\leq 2 \mathrm{mArms}$)
		$2 \mu \mathrm{Arms}$ ($2 \mathrm{mArms}<-\leq 5 \mathrm{mArms}$)
		$5 \mu \mathrm{Arms}$ ($5 \mathrm{mArms}<-\leq 10 \mathrm{mArms}$)
		$10 \mu \mathrm{Arms}$ ($10 \mathrm{mArms}<-\leq 20 \mathrm{mArms}$)
		$20 \mu \mathrm{Arms}$ ($20 \mathrm{mArms}<-\leq 50 \mathrm{mArms}$)
		$50 \mu \mathrm{Arms}$ ($50 \mathrm{mArms}<-\leq 100 \mathrm{mArms}$)
Setup accuracy	Normal	$\pm(10 \%+10 \mu \mathrm{Arms})$ (test signal voltage $\leq 20 \mathrm{mArms}$) (test frequency $\leq 1 \mathrm{MHz}$: spec., test frequency $>1 \mathrm{MHz}$: typ.)
		$\pm(10 \%+100 \mu \mathrm{Arms})$ (test frequency $\leq 300 \mathrm{kHz}$, test signal current > 20 mArms) (spec.)
		```\pm(15% + 200 \muArms) (test frequency > 300 kHz, test signal voltage > 20 mArms) (test frequency \leq 1 MHz: spec., test frequency > 1 MHz: typ.)```
	Constant ${ }^{1}$	$\pm(6 \%+10 \mu \mathrm{Arms})$ (test signal voltage $\leq 20 \mathrm{mArms}$ ) (test frequency $\leq 1 \mathrm{MHz}$ : spec., test frequency > 1 MHz : typ.)
		$\pm(6 \%+100 \mu \mathrm{Arms})$ (test frequency $\leq 300 \mathrm{kHz}$, test signal voltage $>20 \mathrm{mArms}$ ) (spec.)
		```\pm (12% + 200 \muArms) (test frequency > 300 kHz, test signal voltage > 20 mArms) (test frequency \leq 1 MHz: spec., test frequency > 1 MHz: typ.)```

Table 32. Test signal current

Test signal level monitor function

- Test signal voltage and test signal current can be monitored.
- Level monitor accuracy:

Test signal voltage ${ }^{2}$	Test frequency	Specification
5 mVrms to 2 Vrms	$\leq 1 \mathrm{MHz}$	$\pm(3 \%$ of reading value $+0.5 \mathrm{mVrms})$
	$>1 \mathrm{MHz}$	$\pm(6 \%$ of reading value $+1 \mathrm{mVrms})$
$>2 \mathrm{Vrms}$	$\leq 300 \mathrm{kHz}$	$\pm(3 \%$ of reading value $+5 \mathrm{mVrms})$
	$>300 \mathrm{kHz}$	$\pm(6 \% \text { of reading value }+10 \mathrm{mVrms})^{3}$

Table 33. Test signal voltage monitor accuracy (Vac)

1. When auto level control function is on.
2. This is not an output value but a displayed test signal level
3. Typ. when test frequency is $>1 \mathrm{MHz}$ with test signal voltage $>10 \mathrm{Vrms}$.

Test signal current ${ }^{2}$	Test frequency	Specification
50μ Arms to 20 mArms	$\leq 1 \mathrm{MHz}$	$\pm(3 \%$ of reading value $+5 \mu \mathrm{Arms})$
	$>1 \mathrm{MHz}$	$\pm(6 \%$ of reading value $+10 \mu \mathrm{Arms})$
$>20 \mathrm{mArms}$	$\leq 300 \mathrm{kHz}$	$\pm(3 \%$ of reading value $+50 \mu \mathrm{Arms})$
	$>300 \mathrm{kHz}$	$\pm(6 \%$ of reading value $+100 \mu \mathrm{Arms})$

Table 34. Test signal current monitor accuracy (lac)

DC bias signal

Range	-40 V to +40 V
Resolution	Setup resolution: $100 \mu \mathrm{~V}$, effective resolution:
	$330 \mu \mathrm{~V} \pm(0 \mathrm{~V} \leq-\leq 5 \mathrm{~V})$
	$1 \mathrm{mV} \pm(5 \mathrm{~V}<-\leq 10 \mathrm{~V})$
	$2 \mathrm{mV} \pm(10 \mathrm{~V}<-\leq 20 \mathrm{~V})$
	$5 \mathrm{mV} \pm(20 \mathrm{~V}<-\leq 40 \mathrm{~V})$
Accuracy	test signal voltage $\leq 2 \mathrm{Vrms}$
	$0.1 \%+2 \mathrm{mV}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$
	test signal voltage $>2 \mathrm{Vrms}$
	$0.1 \%+2 \mathrm{mV}) \times 4\left(0\right.$ to $18^{\circ} \mathrm{C}$ or 28 to $\left.55^{\circ} \mathrm{C}\right)$
	$\left(0.1 \%+4 \mathrm{mV}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)\right.$

Table 35. Test signal voltage

Range	$-100 \mathrm{~mA}-100 \mathrm{~mA}$
Resolution	Setup resolution: $1 \mu \mathrm{~A}$, effective resolution:
	$3.3 \mu \mathrm{~A} \pm(0 \mathrm{~A} \leq-\leq 50 \mathrm{~mA})$
	$10 \mu \mathrm{~A} \pm(50 \mathrm{~mA}<-\leq 100 \mathrm{~mA})$

Table 36. Test signal current

DC bias voltage level monitor Vdc

$(0.5 \%$ of reading value $+60 \mathrm{mV}) \times \mathrm{Kt}$
When using Vdc-Idc measurement: (spec.)
When using level monitor: (typ.)
Kt Temperature coefficient

[^2]
DC bias current level monitor Idc

(A [\%] of the measurement value $+B[A]) \times K t$
When using Vdc-Idc measurement: (spec.)
When using level monitor: (typ.)
A [\%] When the measurement time mode is SHORT: 2%
When the measurement time mode is MED or LONG: 1\%
$B[A]$ given below
Kt Temperature coefficient
When the measurement mode is SHORT, double the following value.

DC bias current range	Impedance range [8]				
	<100	100	$300,1 \mathrm{k}$	$3 \mathrm{k}, 10 \mathrm{k}$	$30 \mathrm{k}, 100 \mathrm{k}$
$20 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	300 nA	45 nA
$200 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	300 nA	300 nA
2 mA	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$
20 mA	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$
100 mA	$150 \mu \mathrm{~A}$				

Table 37. Test signal voltage ≤ 0.2 Vrms (measurement time mode $=$ MED, LONG)

DC bias current range	Impedance range [Ω]				
<100	100,300	$10,3 \mathrm{k}$	$10 \mathrm{k}, 30 \mathrm{k}$	100 k	
$20 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	300 nA	45 nA
$200 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	300 nA	300 nA
2 mA	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$
20 mA	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$
100 mA	$150 \mu \mathrm{~A}$				

Table 38. 0.2 Vrms < test signal voltage ≤ 2 Vrms (measurement time mode $=$ MED, LONG)

DC bias current range	Impedance range $[\Omega]$ ≤ 300	$1 \mathrm{k}, 3 \mathrm{k}$	$10 \mathrm{k}, 30 \mathrm{k}$	100 k
$20 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	300 nA
$200 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	300 nA
2 mA	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$	$3 \mu \mathrm{~A}$
20 mA	$150 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$
100 mA	$150 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$

Table 39. Test signal voltage > 2 Vrms (measurement time mode = MED, LONG)

Input impedance	Conditions
0Ω	Other than conditions below.
20Ω	Test signal voltage $\leq 0.2 \mathrm{Vrms}$, Impedance range $\geq 3 \mathrm{k} \Omega$, DC bias current range $\leq 200 \mu \mathrm{~A}$
	Test signal voltage $\leq 2 \mathrm{Vrms}$, Impedance range $\geq 10 \mathrm{k} \Omega$, DC bias current range $\leq 200 \mu \mathrm{~A}$
	Test signal voltage > 2 Vrms , Impedance range $=100 \mathrm{k} \Omega$, DC bias current range $\leq 200 \mu \mathrm{~A}$

Table 40. Input impedance (nominal)

DC source signal

Range	-10 V to 10 V
Resolution	1 mV
Accuracy	$0.1 \%+3 \mathrm{mV}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$
	$(0.1 \%+3 \mathrm{mV}) \times 4\left(0\right.$ to $18^{\circ} \mathrm{C}$ or 28 to $\left.55^{\circ} \mathrm{C}\right)$

Table 41. Test signal voltage
Range $\quad-45 \mathrm{~mA}$ to 45 mA (nominal)

Table 42. Test signal current

Output impedance: 100Ω (nominal)

DCR measurement specification

DC resistance (Rdc) measurement function is available when either E4980A-001/200 or E4980AL032/052/102 is installed.

DC resistance (Rdc) accuracy

Absolute measurement accuracy Aa
Absolute measurement accuracy Aa is given as
Equation 15. $A a=A e+A c a l$
Aa Absolute accuracy (\% of reading value)
Ae Relative accuracy (\% of reading value)
Acal Calibration accuracy

Relative measurement accuracy Ae
Relative measurement accuracy Ae is given as
Equation 16. $A e=[A b+(R s /|R m /+G o \times| R m /) \times 100] \times K t$

Rm	Measurement value
Ab	Basic accuracy
Rs	Short offset $[\Omega]$
Go	Open offset $[\mathrm{S}]$
Kt	Temperature coefficient

Calibration accuracy Acal

Calibration accuracy Acal is 0.03%.

Basic accuracy Ab

Measurement time mode	Test signal voltage	
	≤ 2 Vrms	>2 Vrms
SHORT	1.00%	2.00%
MED	0.30%	0.60%

Table 43. Basic accuracy Ab.

Open offset Go

Measurement time mode	Test signal voltage ≤ 2 Vrms	>2 Vrms
SHORT	50 nS	500 nS
MED	10 nS	100 nS

Table 44. Open offset Go.
Short offset Rs

Measurement time mode	Test signal voltage ≤ 2 Vrms	>2 Vrms
SHORT	$25 \mathrm{~m} \Omega$	$250 \mathrm{~m} \Omega$
MED	$5 \mathrm{~m} \Omega$	$50 \mathrm{~m} \Omega$

Table 45. Short offset Rs.

Effect of cable length (Short offset)

Cable length		
1 m	2 m	4 m
$0.25 \mathrm{~m} \Omega$	$0.5 \mathrm{~m} \Omega$	$1 \mathrm{~m} \Omega$

Table 46. Values added to Rs when the cable is extended.

Temperature coefficient Kt

Temperature $\left[{ }^{\circ} \mathrm{C}\right]$	Kt
$0 \leq-<18$	4
$18 \leq-\leq 28$	1
$28<-\leq 55$	4

Table 47. Temperature coefficient Kt.

General Specifications

Voltage	$90 \mathrm{VAC}-264 \mathrm{VAC}$
Frequency	$47 \mathrm{~Hz}-63 \mathrm{~Hz}$
Power consumption	Max. 150 VA

Table 48. Power source

Temperature	$0-55^{\circ} \mathrm{C}$
Humidity ($\leq 40^{\circ} \mathrm{C}$, no condensation)	$15 \%-85 \% \mathrm{RH}$
Altitude	$0 \mathrm{~m}-2000 \mathrm{~m}$

Table 49. Operating environment

Temperature	$-20-70^{\circ} \mathrm{C}$
Humidity $\left(\leq 60^{\circ} \mathrm{C}\right.$, no condensation $)$	$0 \%-90 \% \mathrm{RH}$
Altitude	$0 \mathrm{~m}-4572 \mathrm{~m}$

Table 50. Storage environment

Outer dimensions: 375 (width) $\times 105$ (height) $\times 390$ (depth) mm (nominal)

Figure 2. Dimensions (front view, with handle and bumper, in millimeters, nominal)

Figure 3. Dimensions (front view, without handle and bumper, in millimeters, nominal)

Figure 4. Dimensions (rear view, with handle and bumper, in millimeters, nominal)

Figure 5. Dimensions (rear view, with handle and bumper, in millimeters, nominal)

Figure 6. Dimensions (side view, with handle and bumper, in millimeters, nominal)

Figure 7. Dimensions (side view, without handle and bumper, in millimeters, nominal)

Weight: 5.3 kg (nominal)
Display: LCD, 320×240 (pixels), RGB color

[^3]The following items can be displayed:

- Measurement value
- Measurement conditions
- Limit value and judgment result of comparator
- List sweep table
- Self-test message

Description	Supplemental Information
EMC	
$C_{\text {ISM }}$	European Council Directive 2004/108/EC IEC 61326-1:2012 EN 61326-1:2013 CISPR 11:2009 +A1:2010 EN 55011: 2009 +A1:2010 Group 1, Class A IEC 61000-4-2:2008 EN 61000-4-2:2009 4 kV CD / 8 kV AD IEC 61000-4-3:2006 +A1:2007 +A2:2010 EN 61000-4-3:2006 +A1:2008 +A2:2010 $3 \mathrm{~V} / \mathrm{m}, 80-1000 \mathrm{MHz}, 1.4-2.0 \mathrm{GHz} / 1 \mathrm{~V} / \mathrm{m}, 2.0-2.7 \mathrm{GHz}, 80 \% \mathrm{AM}$ IEC 61000-4-4:2004 +A1:2010 EN 61000-4-4:2004 +A1:2010 1 kV power lines / 0.5 kV signal lines IEC 61000-4-5:2005 EN 61000-4-5:2006 0.5 kV line-line / 1 kV line-ground IEC 61000-4-6:2008 EN 61000-4-6:2009 $3 \mathrm{~V}, 0.15-80 \mathrm{MHz}, 80 \% \mathrm{AM}$ IEC 61000-4-8:2009 EN 61000-4-8:2010 $30 \mathrm{~A} / \mathrm{m}, 50 / 60 \mathrm{~Hz}$ IEC 61000-4-11:2004 EN 61000-4-11:2004 0.5-300 cycle, 0\% / 70\% Note: When tested at $3 \mathrm{~V} / \mathrm{m}$ according to EN61000-4-3, the measurement accuracy will be within specifications over the full immunity test frequency range except when the meter frequency is identical to the transmitted interference signal test frequency (the frequencies around the carrier frequency and frequencies around the modulation frequency).
ICES/NMB-001	ICES-001:2006 Group 1, Class A
	AS/NZS CISPR11:2004 Group 1, Class A
MSIP-REM-KstWNMODSF36	KN11, KN61000-6-1 and KN61000-6-2 Group 1, Class A

Safety | European Council Directive 2006/95/EC |
| :--- |
| IEC 61010-1:2001/EN 61010-1:2001 |
| Measurement Category I, Pollution Degree 2, Indoor Use |
| IEC60825-1:1994 Class 1 LED |

Supplemental Information

Settling time

Test frequency setting time	Test frequency (Fm)
5 ms	Fm $\geq 1 \mathrm{kHz}$
12 ms	$1 \mathrm{kHz}>\mathrm{Fm} \geq 250 \mathrm{~Hz}$
22 ms	$250 \mathrm{~Hz}>\mathrm{Fm} \geq 60 \mathrm{~Hz}$
42 ms	$60 \mathrm{~Hz}>\mathrm{Fm}$

Table 51. Test frequency setting time

Test signal voltage setting time	Test frequency (Fm)
11 ms	Fm $\geq 1 \mathrm{kHz}$
18 ms	$1 \mathrm{kHz}>\mathrm{Fm} \geq 250 \mathrm{~Hz}$
26 ms	$250 \mathrm{~Hz}>\mathrm{Fm} \geq 60 \mathrm{~Hz}$
48 ms	$60 \mathrm{~Hz}>\mathrm{Fm}$

Table 52. Test signal voltage setting time

Switching of the impedance range is as follows: $\leq 5 \mathrm{~ms} /$ range switching

Measurement circuit protection

The maximum discharge withstand voltage, where the internal circuit remains protected if a charged capacitor is connected to the UNKNOWN terminal, is given below.

Maximum discharge withstand voltage	Range of capacitance value C of DUT
1000 V	$\mathrm{C}<2 \mu \mathrm{~F}$
$\sqrt{2 / \mathrm{CV}}$	$2 \mu \mathrm{~F} \leq \mathrm{C}$

Note
Discharge capacitors before connecting them to the UNKNOWN terminal or a test fixture to avoid damages to the instrument.

Table 53. Maximum discharge withstand voltage

Figure 8. Maximum discharge withstand voltage

Measurement time

Definition

This is the time between the trigger and the end of measurement (EOM) output on the handler interface.

Conditions

Tables 54 and 55 show the measurement time when the following conditions are satisfied:

- Normal impedance measurement other than Ls-Rdc, Lp-Rdc, Vdc-Idc
- Impedance range mode: hold range mode
- DC bias voltage level monitor: OFF
- DC bias current level monitor: OFF
- Trigger delay: 0 s
- Step delay: 0 s
- Calibration data: OFF
- Display mode: blank

Measurement time mode	Test frequency							
	20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	2 MHz	
1	LONG	480	300	240	230	220	220	220
2	MED	380	180	110	92	89	88	88
3	SHORT	330	100	20	7.7	5.7	5.6	5.6

Table 54. E4980A measurement time [ms] (DC bias: OFF)

Figure 9. Measurement time (E4980A, DC bias: OFF)

	Measurement time mode	Test frequency					
	20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	
1	LONG	729	423	363	353	343	343
2	MED	650	250	140	122	119	118
3	SHORT	579	149	26	14	12	12

Table 55. E4980AL measurement time [ms] (DC bias: OFF)

Figure 10. Measurement time (E4980AL)

When DC bias is ON, the following time is added:

Test frequency						
20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	2 MHz
30	30	10	13	2	0.5	0.5

Table 56. Additional time when DC bias is ON [ms]

When the number of averaging increases, the measurement time is given as
Equation 17. MeasTime $+($ Ave -1$) \times$ AveTime
MeasTime Measurement time calculated based on Table 54, 55 and 56
Ave Number of averaging
AveTime Refer to Table 57

Measurement time mode	Test frequency						
	20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	2 MHz
SHORT	51	11	2.4	2.3	2.3	2.2	2.2
MED	110	81	88	87	85	84	84
LONG	210	210	220	220	220	210	210

Table 57. Additional time per averaging [ms]

Measurement time mode	Test frequency						
	20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	2 MHz
SHORT	210	46	14	14	14	14	14
MED	210	170	170	170	170	170	170
LONG	410	410	410	410	410	410	410

Table 58. Measurement time when Vdc-Idc is selected [ms]

Add the same measurement time per 1 additional average.
Additional Measurement time when the Vdc and Idc monitor function is ON. Add SHORT mode of Table 58. When using only Vdc or Idc, add a half of SHORT mode of Table 58.

Measurement time mode	Test frequency						
	20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	2 MHz
SHORT	910	230	43	24	22	22	22
MED	1100	450	300	280	270	270	270
LONG	1400	820	700	670	660	650	650

Table 59. Measurement time when Ls-Rdc or Lp-Rdc is selected [ms]

Add the three times of Table 57 Additional Time per 1 additional average number.

Display time

Except for the case of the DISPLAY BLANK page, the time required to update the display on each page (display time) is as follows. When a screen is changed, drawing time and switching time are added. The measurement display is updated about every 100 ms .

Item	When Vdc, Idc monitor is OFF	When Vdc, Idc monitor is ON
MEAS DISPLAY page drawing time	10 ms	13 ms
MEAS DISPLAY page (large) drawing time	10 ms	13 ms
BIN No. DISPLAY page drawing time	10 ms	13 ms
BIN COUNT DISPLAY page drawing time	10 ms	13 ms
LIST SWEEP DISPLAY page drawing time	40 ms	-
Measurement display switching time	35 ms	-

Table 60. Display time

Measurement data transfer time
This table shows the measurement data transfer time under the following conditions. The measurement data transfer time varies depending on measurement conditions and computers.

Host computer:	HP Z420 Workstation, Xeon CPU ES-1620 $0 @ 3.60 \mathrm{GHz}$
Display:	OFF
Impedance range mode:	AUTO (The overload has not been generated.)
OPEN/SHORT/LOAD compensation:	OFF
Test signal voltage monitor:	OFF

Table 61. Measurement transfer time under the following conditions

Interface	Data transfer format	Using: FETC? command (one point measurement) Comparator ON								Comparator OFF	Using data buffer memory (list sweep measurement)

Table 62. Measurement data transfer time [ms]

DC bias test signal current ($1.5 \mathrm{~V} / 2.0 \mathrm{~V}$): Output current: Max. 20 mA
Option 001 (Power and DC Bias enhance):
DC bias voltage: DC bias voltage applied to DUT is given as:
Equation 18. Vdut $=V b-100 \times l b$

Vdut [V]	DC bias voltage
Vb [V]	DC bias setting voltage
$\mathrm{lb}[\mathrm{A}]$	DC bias current

DC bias current: DC bias current applied to DUT is given as:
Equation 19. \quad Idut $=V b /(100+R d c)$

Idut [A]	DC bias current
Vb [V]	DC bias setting voltage
Rdc $[\Omega]$	DUT's DC resistance

Maximum DC bias current

Impedance range [Ω]	Bias current isolation		
	ON	OFF	
		Test signal voltage $\leq 2 \mathrm{Vrms}$	Test signal voltage > 2 Vrms
0.1	Auto range mode: 100 mA Hold range mode: its values for the range.	20 mA	100 mA
1		20 mA	100 mA
10		20 mA	100 mA
100		20 mA	100 mA
300		2 mA	100 mA
1 k		2 mA	20 mA
3 k		$200 \mu \mathrm{~A}$	20 mA
10 k		$200 \mu \mathrm{~A}$	2 mA
30 k		$20 \mu \mathrm{~A}$	2 mA
100 k		$20 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$

Table 63. Maximum DC bias current when the normal measurement can be performed.

When DC bias is applied to the DUT, add the following value to the absolute accuracy Ab.

SHORT	MED, LONG
$0.05 \% \times(100 \mathrm{mV} / \mathrm{Vs}) \times(1+\sqrt{(100 / \mathrm{Fm})})$	$0.01 \% \times(100 \mathrm{mV} / \mathrm{Vs}) \times(1+\sqrt{(100 / \mathrm{Fm})})$

Table 64. Only when Fm < 10 kHz and $|\mathrm{Vdc}|>5 \mathrm{~V}$
$\begin{array}{ll}\text { Fm }[\mathrm{Hz}] & \text { Test frequency } \\ \text { Vs }[\mathrm{V}] & \text { Test signal voltage }\end{array}$
Relative measurement accuracy with bias current isolation
When DC bias Isolation is set to ON, add the following value to the open offset Yo.
Equation 20. Yo_DCI1 $\times(1+1 /(\mathrm{Vs})) \times(1+\sqrt{(500 / F m}))+Y o _D C I 2$

$\mathrm{Zm}[\Omega]$	Impedance of DUT
Fm $[\mathrm{Hz}]$	Test frequency
Vs $[\mathrm{V}]$	Test signal voltage
Yo_DCI1,2 [S]	Calculate this by using Table 65 and 66
Idc $[\mathrm{A}]$	DC bias isolation current

DC bias current range	Measurement time mode SHORT	MED, LONG
$20 \mu \mathrm{~A}$	0 S	0 S
$200 \mu \mathrm{~A}$	0.25 nS	0.05 nS
2 mA	2.5 nS	0.5 nS
20 mA	25 nS	5 nS
100 mA	250 nS	50 nS

Table 65. Yo_DCI1 value

DC bias current range	Measurement time mode			
	$\leq 100 \Omega$	$300 \Omega, 1 \mathrm{k} \Omega$	$3 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$	$30 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$
$20 \mu \mathrm{~A}$	0 S	0 S	0 S	0 S
$200 \mu \mathrm{~A}$	0 S	0 S	0 S	0 S
2 mA	0 S	0 S	0 S	3 nS
20 mA	0 S	0 S	30 nS	30 nS
100 mA	0 S	300 nS	300 nS	300 nS

Table 66. Yo_DCI2 value

DC bias settling time
When DC bias is set to ON, add the following value to the settling time:

	Bias	Settling time
1	Standard	Capacitance of DUT $\times 100 \times$ loge $(2 / 1.8 \mathrm{~m})+3 \mathrm{~m}$
2	Option 001	Capacitance of DUT $\times 100 \times$ loge $(40 / 1.8 \mathrm{~m})+3 \mathrm{~m}$

Table 67. DC bias settling time

Figure 11. DC bias settling time

OOO «4TECT»
Телефон: +7 (499) 685-4444
info@4test.ru

[^0]: 1. When auto level control function is on.
 2. This is not an output value but rather a displayed test signal level.
[^1]: 1. When auto level control function is on.
[^2]: 2. This is not an output value but a displayed test signal level
[^3]: Note
 Effective pixels are more than 99.99%. There may be 0.01% (approx. 7 pixels) or smaller missing pixels or constantly lit pixels, but this is not a malfunction.

